Thermal

Unmanned Aircraft Systems-based Remote Sensing of River Discharge Using Bathymetric Lidar and Thermal Particle Image Velocimetry

Submitted by atripp on Mon, 04/06/2020 - 11:24

The USGS is developing innovative technologies and approaches for measuring river discharge using remotely sensed data. Given the expense associated with remote sensing from conventional aerial platforms (e.g., helicopter, airplane), unmanned aircraft systems (UAS) offer hydrographers a lower cost alternative for data acquisition.

Remote Sensing of Streamflow in Alaskan Rivers

Submitted by atripp on Mon, 04/06/2020 - 10:52

Obtaining timely, accurate information on streamflow in Alaska’s rivers is difficult because gaging stations are sparse, with many located in remote inaccessible areas. Even for established gages, the maintenance and periodic measurements required to operate a gage are logistically challenging and can place personnel at risk, particularly during high flows.

Sustainable Land Imaging User Needs

Submitted by atripp on Fri, 04/03/2020 - 08:50

Landsat satellites have been operating since 1972, providing the longest continuous observation record of the Earth’s land surface. Over the past half century, the Landsat user community has grown exponentially, encompassing more diverse and evolving scientific research and operational uses. Understanding current and future user needs is crucial to informing the design of Landsat missions beyond Landsat 9.

Landsat-based Water Use Mapping on a Cloud Computing Platform

Submitted by atripp on Tue, 12/11/2018 - 14:06

Innovative cloud computing resources for remote sensing science have enabled advanced capabilities and analysis for solving complex large-scale data gap challenges within the USGS Water Availability and Use Science Program. With a vision for water budget estimation for the entire Nation, this research program integrates big data research and development into model applications, evaluation, and results.

Hydrologic Impacts of Irrigation Curtailment in the Upper Klamath Basin

Submitted by atripp on Tue, 12/11/2018 - 14:01

Meeting demand for agricultural water use and ecosystems has become a challenge for the Upper Klamath Basin, which stretches across southern Oregon and northern California. This basin is home to several threatened and endangered species and to more than 200,000 acres of irrigation land on the Bureau of Reclamation’s (BOR) Klamath Project.

Near-field Remote Sensing of Streamflow in Alaska

Submitted by atripp on Tue, 12/11/2018 - 11:52

The USGS presently operates 102 streamgaging stations distributed throughout Alaska. As many of these stations are quite remote, considerable effort is needed to collect periodic measurements and maintain gages. Thus, developing remote sensing methods for measuring streamflow in this vast, largely inaccessible State is valuable for many reasons.

National Land Imaging Program Requirements, Capabilities and Analysis Activities

Submitted by atripp on Mon, 12/10/2018 - 13:21

The USGS National Land Imaging Program (NLIP) has built a long-term capacity to collect and analyze land imaging user requirements to advance the Nation’s operational and science objectives and better serve the land imaging community. The USGS documents the land imaging requirements of U.S.

Modeling Lava Dome Growth Using Visible and Infrared Imagery

Submitted by atripp on Fri, 12/07/2018 - 12:44

The potential for gravitational and explosion-driven collapse is one of the greatest hazards of lava dome eruptions.  Topographic modeling of active lava domes is useful for detecting changes that may influence collapse or explosive activity. It also provides constraints on the volume of potentially collapsible material, a key parameter of effective hazard assessment.